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Building and Using Scene Representations
in Image Understanding

H. Harlyn Baker®
Artificial Intelligence Center
SRI International
Menlo Park, CA 94025, USA

1. SUMMARY

The task of having computers able to understand their
environments through direct imaging has proved to be
formidable. With its beginnings about 30 vears ago (1),
the field of computer vision has grown as a major part
of the pursuit for artificial intelligence. Most elements
of this pursuit - language understanding, reasoning and
planning, speech — are very difficult challenges, but vi-
sion, with its high dimensionality of space, time, scale,
color, dynamics, and so forth, may be the most challeng-
ing. Early attempts to develop computer vision focused
on restricted situations in which it was {easible to pro-
vide the computer with fairly complete descriptions of
what it would encounter. In such cases, single images
provided the sensory information for analysis. As the
domains of application grew, the requirements for more
competent descriptions of the world increased. Dealing
with three-dimensional (3D) dynamic structures (the real
world) from 3D dynamic platforms (we humans) calls for
greater capabilities on both the analysis and synthesis
sides of the issue. The analysis side is the processing of
sensory data for such tasks as recognition and navigation,
and a number of techniques are discussed here for dealing
with these two-, three-, and higher-dimensional data. The
synthesis side is the construction of ‘internal’ descriptions
of what is seen in the environment — constructed now so
that they may be used subsequently for the above tasks.
This latter issue is the underlying theme we pose in this
paper — developing representations from vision that will
later enable effective automated operation in our 3D dy-
namic environments.

2. INTRODUCTION

Vision, which appears so easy for all of us, has proved to
be an extremely complex task when addressed with com-
puters. Despite early expectations in the field for realiza-
tion of machine vision capabilities, it has grown to occupy
a large proportion of the continuing artificial intelligence
research effort. Understanding the coarse structure, let
alone the nuances, of our environment continues to be a
large and, in many parts, elusive challenge.

"The SRI research discussed here has been sponsored by
DARPA under contracts DACA-76-85-C-0004, DACA-T6
90-C-0021, and DACA-76-92-C-0003, and by Fujitsu System
Integration Laboratory.

2.1 Knowledge for Analysis

A major component of the vision efforts seen today still
parallels approaches taken throughout the years — the
building in to the system of specific knowledge of the do-
main it will encounter. Vision does not take place without
memory. As sighted individuals, we have a great deal of
expertise, accumulated over years of observing and inter-
acting with our 3D dynamic environments. Undoubtedly,
certain capabilities appear with us at birth. Experience,
however, and the memory that it accumulates, is equally
critical to our performance. It enables us to rapidly and
robustly interpret situations and events, recognize the fa-
miliar, and react opportunely to what we see. Since expe-
rienice appears so necessary to our performance, it seems
essential that a computer charged with seeing also have
access to some equivalent sort of background knowledge.
Although seldom enunciated, how this knowledge is given
to the system, how it is represented, and how it is used
in analysis of the visual imagery turn out to be principal
igsues in computer vision.

These knowledge issues occur at all levels of the analysis,
from deciding what useful information from small parts
of individual images to extract for subsequent process-
ing (e.g., brightness values, gradients, contour elements),
to considering what is relevant for identifying a striding
distant silhouette as one’s Uncle Bob. At some levels of
the analysis there are generally accepted definitions of
the knowiedge that is appropriate (for example, the use
of spatial-frequency-tuned filters), but, mostly, very little
is understood and very little is agreed upon about these
matters.

2.2 Representational Limitations

My discussion here relates to this knowledge-source issue.
I phrase it as building and using computational represen-
tations in the task of understanding what is presented in
an image of a scene. 1 present a number of pieces of work,
indicating the capability they were designed to provide,
the role of this capability in a vision system, and the level
of initial-state knowledge provided to the system along
with its ability to augment this through time. The main
point [ draw out is that all computer vision systems begin
with an alphabet of operational primitives used to repre-
sent the image data. They have a vocabulary of combina-
tions of these that they can deal with for scene interpreta-
tion. The capability of the system is set by its expressive
power in this vocabulary, while its utility in 2 broader
context is determined by the breadtl of these definjtions
and its ability to grow beyond their limiting bounds. The



latter issue pushes up against generic ‘learning,’ an area
of artificial intelligence probably unparalleled in both its
potential and the ratio of its promise to its realization.!
However, the issue of a system’s repertoire of expression -
its ability to build representations from imaged data and
use them in understanding the visual situation ~ provides
a key measure of its contributions: its contribution in
solving the particular problem it addresses as well as its
contribution to the computer vision task in general.

Two major determinants of the capabilities of a vision
system are (1} the modes of imaging used, and (2) the el-
ements on which it bases its analysis. In the next section I
will provide a reference framework for these by discussing
the principal modes of image data acquisition (single im-
ages, binocular stereo, and dynamic sequences) and the
two choices for processing styles — homogeneous versus
structured. The comparisons of image understanding sys-
tems [ make in the following sections will be {framed by
these categories.

3. IMAGING MODALITIES

Imagery for scene analysis comes in three principal forms:
monocular views; binocular views, and multi-image se-
quences of views — looking at a photograph, looking with
your two eyes without being able to move your head, and
the general situation of two eyes on a mobile head. Each
form of data contributes differently to the scene represen-
tation and image understanding tasks.

3.1 Dynamic Scenes

Image sequences may provide information about scene dy-
namics (other moving objects), or give differing perspec-
tives on 2 scene viewed as the sensor moves around. This
is a2 mode of operation that people are clearly very capa-
ble of using, as we observe our dynamic world and move
around in it, exploring. The relatively new area of ‘*ac-
tive’ vision (as in a sensor that adjusts its perspective to
satisfy its requirements) studies acquiring and exploiting
these sorts of data. Since, from the viewpoint of sur-
vival, anything that is in motion in our vicinity is of spe-
cial interest to us, the analysis of dynamic imagery may
be expected to play a critical part in a computer vision
system.? Taking the more active role in data acquisition
- moving around and collecting information from a va-
riety of perspectives.— leads to considerably more robust
and more precise scene measurements. The cost is con-
siderably more processing.

3.2 Binocular Viewing

What a single moving sensor does not provide is precise
3D measurement of moving objects. To determine the
three-space position of an object requires seeing it from
several (at least two) known perspectives simultaneously.
A moving object viewed by a moving sensor is viewed
from only one perspective at any instant.

1The question of learning is probably at the root of the ques-
tion of intelligence.

2An immediate question with such analysis lies in what is
being tracked through the dynamic sequence, and we will
return to a discussion of this,

Binocular views, image pairs captured simultanecusly
from different locations (as the eyes provide}, can give
sufficient information to enable 3D interpretation of both
static and dynamic elements of a scene. That is, simple
triangulation (back projection) can be applied to corre-
sponding points in two images from known viewing po-
sitions to determine the location of the observed point
in three-space. The biggest problem in stereo - one that
has been with us from the beginning - is developing reli-
able techniques for determining which point in one image
corresponds to a point in the other. This is the ‘corre-
spondence’ problem — matching elements® between views.
Although static binocular viewing is unusual — in human
vision most binocular perception is dynamic — it is cer-
tainly effective, as viewing Figure 5 (subsection 6.3.3) will
show. Depth is a powerful aid to scene understanding.

3.3 Single Images

With a stationary sensor viewing a nonchanging scene,
a single snapshot view may be all that is available, and
alone must be the basis for scene interpretation. That
humans can operate with such a deficiency of informa-
tion, for example in viewing photographs, lacking dynam-
ics and expiicit three-dimensionality, reveals the power of
our processing and the value of memory and experience.

Most early theses in computer vision dealt with analysis
of single images, and their failings immediately taught us
the lesson of extensibility. Lacking access to the rich in-
formation of depth and motion, systems for single-image
analysis were initialized with specific knowedge of the sim-
ple objects with which they could deal, and had no way
to grow beyond this aside from reprogramming.

If all that is presented is a single image, and never in the
context of a dynamic sequence, any interpretation will
have to forego explicit temporal or 3D analysis. Since
we presumably do not begin life with explicit knowledge
of 3D structures, such as houses and cars, yet develop
understanding of them over time (with both stereo and
temporal data available), it is inconceivable that memory
could operate without temporal analysis.

3.4 Processing Elements

A distinction within the different modes of operation that
will be contrasted throughout this article is the choice of
analytic element used in the analysis - image pixels or
‘higher-level® features such as contrast edges or extended
contours. These are often termed pixel-based and feature-
based processing. At the pixel level, image intensity val- '
ues are treated in an undifferentiated way, and the result-
ing representation is often termed “retinotopic” for its re-
semblance to a retinal layout. Feature-based processing
and descniption works with a distinguished subset of the
image information, and leads to scene descriptions that
are more sparse but, through better localization, are also
more precise. Although in truth this dichotomy is more
of a continuum, I will exclusively consider the latter as
structured abstractions from the imagery — the features
will be edge elements or parts of contours.

3 A variety of choice of 'element’ have been developed.



4, DINGLE IMAGE ANALYSIS

A common task in computer vision is to identify or clas-
sify items in a single image taken of some scene. For
example, the task may be to identify and assemble com-
ponents of a small machine, or to identify targets in an
aerial view of a military installation. Clearly, single snap-
shot images of such a scene will lack 3D and dynamic in-
formation. The processing must rely on some comparison
of what the computer expects to see with descriptions it
extracts from the single image.

At the pixel level, the comparison may aim to group parts
of the scene based on textural and other classifications.
For example, a region that exhibits high spatial intensity
variation (texture) may be classified as vegetation if the
scene is expected to contain vegetation. Homogeneous re-
gions may be sky if, again, the domain is known to be a
natural scene out of doors. Anticipated relations between
classified regions may provide use of mutual consistency
to make the interpretation more robust. For example, if
sky must be above vegetation, which is generally above
the ground, then these spatial relations should be required
of the classified regions. The major determinants of the
capability of the system are the quality of the classifiers
and the suitability of the relations. One may appreci-
ate that determining effective classifications and refation-
ships, valid across a wide range of realistic situations,
might be difficult.

At the feature level, 2D shape descriptors are typically
extracted from such imagery, for example straight lines,
curves, and smooth contours, grouped into contiguous
pieces. Some previous automated or interactive process
has led to the development of a ‘model vocabulary’ — a
set of feature groupings that can be composed together
to represent the range of objects anticipated in the scene.
Recognition involves comparing the extracted features
(e.g., lines, arcs} and their interrelationships with those
represented by the models.

What is probably most important to observe in this
single-image analysis is that the processing must be pre-
ceded by defining what is expected to be seen in the im-
ages. Since 3D shape and motion are not available to
the analysis, recognition must be based solely on the 2D
information that can be obtained.

4.1 Interpretation through Pixel Classification
Strat (2) has demonstrated an impressive capability at in-
terpreting natural scenes with a pixel-based classification
system along the lines outlined above. He points out that
most recognition schemes are based on geometric repre-
sentations and matching of discrete features, yet natural
scenes are neither well described by geometry nor char-
acterized by specific localizable features. Taking a more
eclectic approach, he develops a battery of filters that at-
tempt to classify image regions, and builds a relational
network among these descriptors. What brings the clas-
sifiers together is ‘context’ — the expected relationships
between labeled components. These contexts are estab-
lished manually in advance of any processing, and are
individually constructed for specific domains.

By making the recognition context sets very specific, for
example identifying ‘foliage against sky’ rather than sim-

ply ‘foliage,’ they can be made more reliable. At the same
time, generic contexts can be defined that may be satis-
fied when more specific ones cannot. Context sets may
include components that are both positive (for example,
tree trunks tend to be vertical), and negative (ground can-
not extend above the skyline). A variety of grouping and
segmentation techniques are used over a variety of scales
to produce candidate scene region labelings - estimates
of pixel groupings (similar intensity or color), similar tex-
ture, horizontal or vertical orientation, line-like structure,
and so forth. Robust operation is attained through use of
overlapping or redundant filters. Fer example, sky may
be either an untextured homogeneous region of high in-
tensity or an area of smoothly varying general brightness
above most other areas in the image. Cliques ~ mutu-
ally consistent sets of classifications - are sought over the
image. The clique providing the greatest reliability and
coverage is chosen as the best interpretation of the scene.

Using an auxiliary knowledge representation system {the
Core Knowledge System, CKS (3)), a sequence of images
may be processed, accumulating and sharing constraints
from their individual interpretations. This, together with
a coarse use of stereo (4), enables Strat’s system to build
up a rough symbolic 3D map of the area being viewed.

The examples Strat presents are in outdoors scenes of
trees, rolling hills, and pathways. Figure 1 shows a 3D
reconstruction of an outdoor scene analyzed with this sys-
tem.

Fig. 1. Ground and vegetation interpreted
from a single image.

While demonstrating a good capability at classifying im-
age components in domains where the relationships have
been prespecified, this approach is unlikely to provide the
depth of interpretation needed for general sceme under-
standing. QOnmne factor in this is that the system would
require a significantly larger vocabulary of objects with
increasingly tight constraints on their interpretation to
distinguish, for example, among different types of trees
or, more critically, to recognize specific trees, such as the
one with a broken branch on the top of a certain hill. This
requires geometric understanding rather than an under-
standing of certain relationships. In addition, no mecha-
nism is presented for abstracting the required rules from
the data. If one wants the system to show a utility be-
yond simple domains, this generative aspect is essential,
and geometry probably cannot be avoided. Nevertheless,
relational measures are generally missing from geometric-
based recognition systems, and the use of this relational




approaci 1l a parinersiup with the more metric approach
of shape- and structure-based techniques should lead to
more reliable operation for both.

4.2 Shape from a Single Image

A difficulty in trying to obtain information about shape or
3D structure from a single image is that a particular single
image could arise from an infinity of scene configurations.
The simplest example of this is an image of the image
itself, where there is clearly no three-dimensionality to be
observed, only interpreted. Interpretation requires knowl-
edge, including knowledge of the physics of the imaging
process and the local implications of intensity variation
with respect to the shape of the imaged surface. Never-
theless, we all have the ability to interpret single images
as 3D scenes, and there has been considerable effort in
the field to develop similar capabilities in the computer.
Using iterative optimization techniques and models of il-
lumination, reflectance, and variations including albedo,
Leclerc and Bobick (5), and others, have demonstrated
the ability to recover surface height from simple measures
on the imagery.

That such analysis cannot be guaranteed correct is ap-
parent from its fundamental assumptions. The interplay
of reflectances and shadowing could cause havoc with the
modeling, which presumes fairly simple relationships be-
tween light source and reflecting surface. Any variation
is interpreted as either surface shape or simple albedo
change. Such shading analysis probably will have its
greatest use where other depth measurement techniques,
such as binocular stereo, have insufficient information to
operate, yet can provide 3D constraint to limit ambiguity.

4.3 Models in Interpreting Single Images
Undoubtedly, much of the world is quite well described
geometrically or by discriminable aspects of coloring, tex-
ture, or structure. Since the world is three-dimensional,
a critical element of scene analysis must be the ability to
represent and recognize 3D objects. In these cases, recog-
nition may be attained by locating specific scene features
and comparing their parameters with those chosen in ad-
vance to represent specific objects. Recognition, here,
may be viewed as searching through a set of 3D object
descriptions and finding the mapping of position, orienta-
tion, and scale that provides the most satisfactory corre-
spondence. Aside from the selection of feature descriptors
and the inevitable question of how to acquire the object
descriptions in the first place, the major challenge in this
work is effective search through the potentially enormous
set of match possibilities.

Two pieces of research can highlight the approaches taken
to this shape-based or structural recognition. While ad-
dressing 3D recognition, each uses information from single
images for its recognition. The first represents objects as
integrated networks of 3D points. The second provides
coverage of the 3D situation by storing a range of rep-
resentations, each pertaining to a small set of viewing
perspectives.

4.8.1 3D Models with fmage Matching in 2D

Huttenlocher and Ullman (6) introduced the term ‘align-
ment’ -~ a2 method to match stored models with features
obtained from a view of a scene, In their work, the fea-

tures - both in the scene and in the model - are two-
dimensional contours (each classified by its shape) and
their endpoints, if a straight contour, or midpoints oth-
erwise, A mode] is a set of 3D points forming triangles
{planar facets), and the contours of which they are part.
Alignment is the process of selecting pairs of correspond-
ing triangles (from the model base and from the imagery)
and using the transformation implied by their match to
map the rest of the contour description. The transfor-
mations are simple translations, rotations, and scalings.
Estimating the goodness of fit of the resulting transforms
enables selection of a ‘best’ interpretation.

4.3.2 2D Models and Image Matching

Chen and Mulgacnkar (7) address the problem of model-
matching using 2D image data in a more methodical and
practical manner. While using a related approach to
the matching — hypothesizing ‘alignment’ transforms and
mapping the related constraints for validation with the
data, the detail of their strategy offers considerable ad-
vantage.

Two characteristics of their work stand out. First, they
build their models in a semiautomated way by showing
the system parts from various perspectives and under dif-
ferent lighting conditions. Model acquisition is a crucial
and potentially? very time-consuming component of set-
ting up a recognition task, and a which technique that
automates this using the resuits of its own analysis imme-
diately has more utility. Each model is structured as a set
of classified contour elements — straight and curved seg-
ments — ordered by their relevance to the matching task.
Features that are detectable most often in the training
set and are found most likely to be correctly identified in
the data are ranked higher in importance. These should
be the first to be sought in the matching. This ‘learning’
strategy enables each model to be organized in a man-
ner that is most effective for establishing its presence or
absence in the scene. In effect, 2 model is a sequence
of instructions for validating an object’s presence in the
image — it is a program.

Their representational system is 2D, and a single object
will be composed of several perspective models, with each
covering a small range of viewing angles — plus or minus
perhaps 15 degrees in each direction. This is not as sat-
isfying a solution as building 2 unified 3D model of each
object; however, it has practical advantages in that it
simplifies both the modeling task and recognition.

The system was developed and demonstrated on an in-
dustrial assembly operation, involving about two dozen
parts, and has since been used for identifying objects in
a dynamic context (see subsection 6.3.3).

4.4 Prospect Beyond Single Images

The techniques described above have relied primarily, if
not totally, on 2D information, both in their models and
in their image understanding. The use of 3D information
for model representation and recogrition has had less and
generally more recent investigation. The principal differ-
ence in these works arises from the necessity of obtaining
3D information from the scene. This cannot be done from

‘“potentially” because very few object recognition system

have any sizeable model repertoire



single 1mages, and requires either active ranging (for ex-
ample, structured lighting, sonar, radar) or at least two
simultaneous perspectives from passive sensors such as
cameras.

This step to three dimensions lays the foundation for the
distinction I wish to make in approaches to image under-
standing. If the system has no recourse to 3D temporal or
spatial information, then its knowledge is limited to what
the developer programs in: if the system has an ability
to integrate information across space or time, then it can
begin to meaningfully augment its knowledge base. Ac-
quisition of this 3D information is the focus of the next
two sections.

5. SCENE MODELING FRROM STEREO

Image pairs, providing two perspectives of a scene, pro-
vide the data for inferring the range to points in a scene.
This is termed binocular ‘sterec’ processing, after its re-
sulting solid three-space description of the scene. The
goal of stereo analysis is to obtain the best estimate pos-
sible of the range to points in the scene. ‘Best’ may de-
pend on a number of requirements, including speed. The
point to observe about these systems, however, is that
they have some knowledge about the state of the world
they are looking at — knowledge that serves to constrain
the solution they present — and they have the common
goal of developing a 3D description of the scene. It is
common in stereo research to produce a range map, but
very uncommon to do anything further with it, for exam-
ple, navigating or controeiling a robot arm.

Once the camera position and correspondences are
known, estimating the range to some feature in the scene
is a simple matter of triangulation. An effective mecha-
nism for limiting the cost of determining these correspon-
dences lies in using the ‘epipolar constraint.” Knowing
the two camera relative positions and attitudes enables
definition of the expected pattern of disparity on the im-
ages. For cameras directed in parallel, the disparities will
only be lateral, while for converging cameras the patterns
will be radial. This camera information is used to shape
the search window for possible corresponding elements, so
it both reduces ambiguity and decreases computational
cost.

5.1 Pixels versus Features

Within stereo processing, two major approaches are taken
in selecting correspondences, one based at the pixel level
and the other at the feature level. The objective within
the two is the same, however — recovering the 3D struc-
ture of the scene as represented by the 3D location of its
components. The main distinction lies in what consti-
tutes these ‘components.’

5.2 Scene Geometry from Imnge Pair Pixels

In pixel-based sterec processing, the objective is to la-
bel each peint in an image {where possible) with a range
value. If the relative positions of the cameras are known
and corresponding pixels can be found in the two views,
then relative range can be estimated directly by trian-
gulation. Absolute range comes from knowing absolute
camera displacements. The techniques used for solving

the correspondence problem generally involve correlation
- estimating the similarity between image regions in the
two views, This similarity is usually measured as a local
difference in intensity value between corresponding parts
of the two images, with secondary constraints being in-
troduced to enforce global consistency. The former, lo-
ca! measure, uses a small support function ~ typically a
square or circular region centered on a pixel — with the
similarity being either a simple sum-of-squared differences
(S8D), or a correlation coefficient measure. The correla-
tion coefficient measure may be normalized to eliminate
the effect of linear variations that might arise, for ex-
ample, from viewing at different times of the day, under
differing light conditions, or with separate automatic gain
adjustments on the two cameras.

In S5D matching, the expression to be minimized at any
pixel {z,y) is:

SSD., = Z Te{z+rz, y+ry)~Ir(z+dz +rz, y+cI,,+r,,.)]2

Tx ,f’v

where (ds,dy) is a displacement from the source image
pixel Ir(z,y), and {rz,vy) defines a region of integration
in the destination image, Jr{z + d:,y + dy). This sum
may be weighted to diminish the effect of brightpess vari-
ance with radius. The vector (ds, d,) with minimal sum
58D; y is selected as the image of the pixel at {z,y) in
the second frame.

In normalized correlation, optimization is based on the
Ineasure:

e, [I(z 9) = IL)lTR(z,9) = Ia]

E =
\/i:’rv[h,(z,y) - I Zr,.r,[IR(x’ y) = Ir]?

where [ is the mean brightness over the image region
{rz,7y) centered at (z,y¥).

5.2.1 Normalized Cross Correlation

A typical approach to pixel-based stereo analysis is that
of Hannah(4). Here, normalized correlation provides the
matching metric, and processing in a resolution hierar-
chy provides a global consistency constraint. This use
of a resolution hierarchy is fairly common in computer
vision. It involves building a pyramid-like structuring
of the image data, with the bottom level being the full-
dimensioned image, and successively higher levels being
the half-resolution versions of the one below them. The
top level is a small, very highly reduced, and subsampled
version of the original image - it has only very low spatial
frequency components, with the higher frequencies being
removed by the successive averagings.

A strategy often used in computer sterec vision is to
match coarse features first (low spatial frequencies), and
then use the results at this scale to constrain finer scale
matching (higher spatial frequencies).® Beyond this con-
straint, Hannah also requires that her correspondences
are the same in left-to-right matches as they are in right-
to-left matches. Analysis of the correlation coefficient and

31t is always possible to show images in which such an arbi-
trary direction of progression will give the wrong answer.



an autocorrelation measure enables this process to ignore
matches that have insufficient evidence for reliable esti-
mation. This has the benefit that hallucinations, such as
giving range to the sky, do not occur often. This tech-
nique, however, is costly in computation.

5.2.2 Stochastic Stereo

An alternate that is particularly suitable for implementa-
tion on a SIMD parallel processor is a stochastic method,
developed by Barnard, using a simulation of the physi-
cal process of annealing to enforce global consistency (8).
This method uses a composite similarity measure ~ image
intensity difference and a gradient constraint that biases
the solution in favor of a flat disparity map. The stochas-
tic element enters the analysis in the way the individual
difference measures are combined in looking for a global
solution for the image pair. As in annealing, the system
is injected with energy (heat), allowed to cool, heated
up again — although less — then cocled again, repeating
until there is very little change between these heat/cocl
cycles. The measured change is this similarity measure —
a weighted sum of intensity difference and implied dispar-
ity gradient for the selected pixel matches. The different
‘heat’ settings allow a varying range of disparity adjust-
ments in the pixel matching.

The measure minimized for optimization in stochastic
stereo is:

Eij =Y (ALl + AV Dy,

ij

with ALj; = Ir(i,7 + Dij), where Jp and Ip are the left
and right brightness values, and VI); is the gradient of
the associated disparity estimate; ) balances the bright-
ness and smoothness constraints.

Even when a parallel processor is used, the cost of iter-
ation makes this a fairly time-consuming technique. Im-
ages of size 512 by 512 pixels require about 10 minutes
of processing time on an B000-processor Connection Ma-
chine (CM).

5.2.8 Real-Time SSD Malching

A third technique worth examining for its simplicity
and effectiveness is an SSD method implemented on
both a 16000-processor CM and on a coarse-grained (5
processor) i860 parallel processing system {9). Much ef-
fort was invested in making this process run as rapidly as
possible to support real-time control, and it can perform
stereo matching on images 256 pixels square at about 40
Hz on the CM and 10 Hz on the 1860 configuration. The
58D phase gives velocity estimates for each pixel, mode
analysis of this velocity distribution selects the major dis-
crete motions, and an adjustment phase tracks regions
over time. It has been used to control a robotic arm in
tasks such as maintaining centered view on pedestrians
and on another robot arm.

§5.2.4 Congsiderations

Both of these parallel approaches share a common draw-
back. They process only in integer units of disparity, so
deliver just a small number of bits of range resclution.
In the case of the stochastic stereo, this was about 5 bits

(32 levels), while with the SSD methed it was about 3
bits (B levels). Any change in this precision incurs added
computational cost. Hannah’s method delivered subpixel
correlation measures, and was precise down to small frac-
tions of a pixel unit.

5.3 Structured Stereo Processing

Another approach to stereo analysis for obtaining 3D in-
formation about a scene involves the processing of not
pixel values but abstracted features — contour elements as
produced by zero-crossing operators. Marr and Pogglo,
Baker, and Mayhew and Frisby were the early developers
of this feature-based approach to stereo matching.

Marr and Poggio (10), later joined by Grimsen {11),
worked with zero crossings of the Laplacian of a Gaus-
sian (LOG), and progressed from large Gaussians to small
Gaussians in a hierarchic-pyramid manner. Matches ob-
tained at the coarse level constrained the possible matches
at finer levels. A consistency measure was implemented
by insisting that disparities over a small region were iden-
tical. An unfortunate artifact of this is that their re-
sults tend to represent the scene as planar chunks at
different ranges. Mayhew and Frisby (12}, later joined
by Pollard (13), used a figural continuity constraint to
enforce connectivity of depth estimates for LOG fea-
tures that were connected in projection. They alsc used
peaks and troughs of this signal, presenting evidence from
psychophysics supporting human use of these in vision,
and introduced a variation of the scale analysis of Marr
and Poggio — looking for consensus in neighboring bands
rather than in successive coarse-to-fine levels. Baker (14)
used a form of figural continuity as well, and followed his
feature matching (extrema of intensity gradient related
to zeros of the LOG) with constrained intensity matching
to provide a dense range map. Grimson used a surface-
fitting technique to interpolate between matched features
to estimate this map.

The fact that feature-based stereo results in sparse range
measures has been raised as a criticism. Dense results are
preferred. Feature-based approaches have greater preci-
sion, however, as they focus on the more localizable parts
of the imagery. Scale processing is felt to be a key to pro-
viding dense results. Pixel-based techniques have been
more easy to implement on SIMD parallel processers, so
they may have an inherent advantage for real-time devel-
opment.

Much other research has addressed pixel-based and
feature-based stereo, including using a third camera to
provide an ambiguity-resolving perspective and introduc-
ing other constraints (a recent survey paper covers much
of this area well (15)). Among some dozen and a half sys-
tems evaluated competitively a {ew years ago (16), Han-
nah’s system was ranked first across a majority of the
categortes (17).

5.4 Differential Techniques: Motion and Range

A diflerent approach to disparity estimation has been
developed {or motion processing — optic-flow analysis ~
where the objective is to estimate movements in a scene
{18). TUnder certain conditions these techniques may
also be used for stereo range estimation. Two principal
points distinguish this work {rom pixel- and feature-based



matching approaches. First, the presumption is that
there is very little difference from cne image to the next —
motion processing allows this, whereas typical stereo has
a sufficiently large baseline that images may differ signif-
icantly. Second, differential techniques are used that do
not depend on feature localization in the image.

5.4.1 Optic-Flow Analysis

Horn and Schunk (19) developed the brightness-
constancy constraint, which relates variation of intensity
between successive images with the underlying variation
in the scene. The principle behind this differential tech-
nique is that derivatives of the spatiotemporal intensity
data indicate rate of image change. If the image change is
due only to camera displacement, then simple derivative
convolutions on the spatiotemporal intensity data can be
used to estimate scene distances. If the change is due
to scene motion, then the technique estimates velocities.
Since the expression for the variation at a single point
is underconstrained, the solution inveolves a least-squares
approximation that integrates over some local neighbor-
hood, and this makes the result sensitive to the density
of discrete motions in the vicinity. The estimates are best
where there is strong local texture (surface detail) with
a single velocity. Where the texture is weak (there is lit-
tle distinctive detail) or the local vicinity contains more
than one motion (such as occurs at object boundaries),
the estimate can be rather meaningless. Despite this, the
results tend to be generally credible.

With the differential approach, image disparity {or veloc-
ity) (dz, dy) at frame ¢ can be determined by minimizing
the following expression:

D=Lz w 1) + dy Iz 0.1 + Lz, v, OF,

Tz, y

where I7, I}, and I] are spatial and temporal derivatives
of image intensity I{z,y,1).

The summaticn is again taken over a local region of the
image (rz,7y). One finds the least-squares solution, in
closed form, by taking derivatives of this expression with

respect to ds and dy. The least-squares estimate is given
by:

d=-M"b,
where 2 ,
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This expression has minimum error when

deI +dyl, + 1 =0,

that is, when the observed image gradient vector
(12,1, It) is orthogonal to the observed disparity (or ve-
locity) vector {dz,dy,1). Figure 2 shows the optic flow
computed for the motions of a sedan and van against a
stationary background, the imagery of which is shown at
the top of Figure 5.
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Fig. 2. Optic Flow for Moving Sedan and Van.

5.4.2 Hierarchic Optic-Flow Computation

Hanna has presented a method for extending the appli-
cability of the gradient-based technique to images with
significant variation between frames (20). This operates
through a hierarchic-pyramid analysis, beginning with
low-resclution coarsely sampled imagery, and progressing
through to the full resolution data. A unit of pixel mea-
sure in the coarse imagery corresponds to a 2™ by 2™ pixel
region at highest resolution n jlevels finer, so a gradient
computed at this single unit can identify the predomi-
nant motion over that much larger window. Recursive
processing of this motion estimation followed by image
remapping — to bring the corresponding image locales into
alignment for the next gradient analysis ~ may be viewed
as delivering the n-bit motion vector a bit at a time, start-
ing from the highest-order bit. What is important to note
is that with this hierarchic approach, gradient-based op-
tic flow can also be used for stereo range estimation —
large disparities are handled by the coarser scales. The
major difficulty remains, however, that there can be no
guarantee this coarse-to-fine progression will give correct
results. A small feature that is moving to the left while
the predominant region motion at a coarse level moves
to the right will be ‘mapped’ in the wrong direction for
being detected at any of the succeeding levels.

An iterative remapping method very similar to Hanna’s
was used much earlier by Quam in his hierarchical warp
stereo process (21). The matching metric in this work was
correlation, rather than gradient-based optic flow.

5.5 Issues in Stereo Processing

A number of questions must follow any depth recovery
process, such as: Are there measures of confidence asso-
ciated with individual estimates? Is the result conclusive?
Are there errors of omission {gaps) or commission (range
estimates where there can be none)? Does the process
deliver a description of objects or just an array of num-
bers that represent a range ‘map?’ How relevant is the
resulting description to the intended use? Since the pur-
pose of range recovery is tied to some other task, such
as understanding the scene or moving about in it, these
questions can determine the utility of the whole exercise.

One of the principal dissatisfactions in stereo analysts has
been in its reliability. Perhaps 90% of a scene can be
adequately modeled with the above techniques, but the
remaining 10% failure can make the results almost un-
usable. Higher reliability is needed before one can trust
an autonomous device for guidance. There is very lit-
tle opportunity to obtain better accuracy when presented



with only two perspectives of a scene. Ambiguities are
difficult to detect, and cannot be resolved without the
introduction of more information. This information has
often taken the form of a priori knowledge about scene
and object types (for example, that the scene contains
static opaque rectilinear structures).

Better additional information that is not domain specific,
is provided by “trinocular stereo,” which involves acquir-
ing a third view of the scene. This was first introduced
by Burr (22) and later followed by Faugeras’s group in
France (23). This third view, if noncollinear with the
other two, provides a second epipolar constraint that can
disambiguate potential match uncertainties.

Almost without exception, stereo techniques have diffi-
culty in correct handling of occlusion (where a feature
does not have a match in the corresponding view), image
reversals (where feature left-to-right ordering is inverted
between views), transparency (where multiple ranges are
associated with individual view points), and canopy phe-
nomena (where there are a few predominant and quite
different depth ranges over a smail region of the view).
These are significant issues for depth estimation and nat-
ural scene interpretation.

A more general comment on two- or three-view sterec is
that the resulting descriptions are not of the same qual-
ity as those we perceive when we as humans observe a
scene. Stereo results look like cut-outs, with a series of
ranges computed for certain directions of the camera. The
same can be observed in looking at a sterec pair of pho-
tographs — the perception is likely to have a flat, disjoint,
and chunky appearance. The perception we have under
natural conditions is more continuous and connected, and
this results from our ability to observe in the continuum
through time. We change our viewing position to suit
our demands for fill-in and clarification, and integrate in-
formation through active control of the viewing process,
such as obtaining a description of some novel 3D object
by grasping it and manipulating it before the eyes.

6. SCENE MODELING FROM SEQUENGCES

Recent approaches to 3D vision have addressed this pro-
cessing of image sequences, where a sequence comprises
many views from different positions. This more closely
resembles the operation of the human system, where we
observe with eyes that are free to move, collecting in-
formation from various perspectives. This multiple-view
approach could provide considerably more complete de-
scriptions of a scene, revealing, for example, what the
back side of an object looks like, and could do so with
much less ambiguity. Aside from restricted cases, how-
ever, it has proved difficult to exploit this extra data in
the coherent manner required. One of the problems lies in
organizing and maintaining coherent descriptions of the
rather massive amount of data involved - sequences could
be hundreds of frames long, or more.

6.1 Correspondence Through Time

Sequence processing shares many of the computational is-
sues of sterec. The principal problem in stereo processing
has been identified as putting into correspondence, accu-

rately and reliably, features that appear in two views of
a scene. Determining the correspondence is an ill-posed
problem: ambiguity, occlusion, image noise, and other
influences resulting from the differing appearance of ob-
jects in the two views make feature matching difficult. In
sequence analysis, where rapid image sampling produces
images that change little from one to the next, matching
is less problematic. In some approaches this is taken to
an extreme, with sampling sufficiently rapid that images
vary smoothly between views. The following sections de-
scribe how this temporal continuity has been developed
and exploited for robust tracking and estimation of scene
features.

6.2 Pixel-Based Sequence Analysis

As was the case with stereo analysis (cross-correlation and
gradient analysis), there are two principal approaches to
pixel-based motion analysis. In correlation, the objec-
tive is to determine for each pixel in one frame, its im-
age in the next frame. Techniques as described in sec-
tion 5.2 are used for this. SSD is more typical than nor-
malized correlation in sequence analysis. With temporal
sampling sufficiently fine that brightness changes are of
a smaller magnitude than changes due to motion, there
is little requirement for accommodating to varying illu-
mination. With the optic-flow approach, on the other
hand, explicit matching is avoided, and motion is derived
directly through differential analysis, as described in sec-
tion 5.4.

Another problem both correlation and optic-flow analyses
encounter is that they are designed for pair-wise compu-
tation rather than for sequential tracking. Since they are
referenced on the center of a pixel in one image, their dis-
placements are not easily chained with precision through
asequence. Range estimates will be imprecise over a short
baseline, so the reliability and precision obtainable for
matches over a long baseline become crucial questions.

Pixel-based and point-based reconstruction techniques,
where they have been developed to the stage of integrat-
ing measures over a sequence (for example, (24, 25)), do
not exploit the continuity of observations. Rather, they
treat observations from different perspectives as disjoint,
and pool them in (more or less estimation-theoretic) vol-
ume sets,

A recent innovation - the use of a singular value decom-
position procedure - uses intermediate feature trackings
to synthesize a long baseline through many small changes.
It recovers both the shape and motion observed in trans-
formation of a rigid body (26). The tracking employed
uses an autocorrelation measure to select distinctive im-
age features (in a spirit similar to that of Hannah). By
tying observations together through the sequence, it ob-
tains the benefits of a large baseline with the reduced
error of small-increment image variation.

A difficulty with local-support integration techniques
(pixel-based approaches in general) is that when the lo-
cal region of integration overlaps different range distribu-
tions, the estimate may be quite meaningless. Since these
bounding areas are of particular interest in most 3D tasks
—such as grasping and navigating — this deficiency can be
quite severe, The issue is particularly salient in motion
analysis, where an intermediate velocity estimate is much



more misleading than an intermediate range estimate. In-
telligent window shaping may improve the situation, al-
though at significant cost (27).

6.3 Structured Processing — EPI Analysis

There is much more in an image sequence than is being
processed by techniques such as those described above.
Selecting only highly localizable features leads to sparse
scene descriptions, while use of the full image contents,
as in optic-flow and correlation approaches, leads to much
uncertainty, weak localization, and {fragmented tracking.
An alternative exists in utilizing the three-space correlate
of 2D image contours. The motivation of this ‘structured’
approach to sequence analysis is that dynamic imagery
has both spatial and temporal structure, while pixel-
based techniques represent neither and must determine
them both during its operation. Pixel-based techniques
compute the temporal structure by ‘tracking’ features us-
ing correlation or optic-flow analysis, and determine the
spatial structure by grouping results after temporal track-
ing. And yet the structure is there in the data.

Epipolar Plane Image (EPI) Analysis is such a technique
that holds particular promise for scene reconstruction
(28). It integrates throughout the data acquisition and
has several major advantages over other approaches, such
as not requiring correlation or any similar matching strat-
egy, and dealing explicitly with spatial and temporal con-
tinuity. The features utilized are at object and texture
discontinuities, so do not invelve integration across dif-
ferent range distributions. This technique was the first to
exploit small increments over a large integrated continu-
ous baseline for the ideal mix of reliability and precision
in motion analysis. The geometry and intuition of imag-
ing in this situation are a little unusual, so I will review
the implications of the generally used epipolar constraint
in the context of sequence processing,.

6.3.1 Epipolar Geometry

In Figure 3 (left), a camera is shown at two different posi-
tions along a linear path. At each of the sites the camera
is looking at right angles to the path, and a feature such
as P will appear displaced to the right in the second view
with respect to the first. This displacement is along the
projection of the plane formed by P and the two camera
centers. This plane is termed an “epipolar plane.” For
a continuing sequence of such images, the point P will
stay on the same image scan line from frame to frame.
Because of this epipolar structuring, we can confine our
depth analyses in right-angled linear motions to single
sets of scan lines. Figure 4 shows a volume formed by
stacking up the data collected in an image sequence and
slicing horizontally to reveal such a set of scan lines. The
pattern of streaks in this slice makes the lateral displace-
ment character quite apparent and their interpretation
quite direct: Near features have streaks with low slopes,
more distant features have higher slope. Stereo process-
ing of such a scene would correspond to comparing fea-
tures between, say, the first and the last frame, or the
first and last line of this image. The continuity evidenced
here takes the uncertainty out of the matching process.
Analysis of these slice images, termed epipolar-plane im-
ages {EPI images) after their composition from samples
of a single epipolar plane, led to an effective technique for
estimating the range to features in a scene.

Fig, 4. Spatiotemporal Image Volume.

6.3.2 Spatiotemporal Manifolds

To expand the technique to more complex viewing situa-
tions such as nonlinear and varying-velocity camera paths
with varying camera orientations, as would be found when
a human moves through a scene (Figure 3 (right} shows
patterns of epipolar lines that arise for linear motion and
varying view direction), it was necessary to generalize the
geometric representations used. In the earlier work, EPI-
based linear {eatures — representing the evolutien of indi-
vidual features over time — were detected and processed.
In generalizing the approach, spatiotemporal manifolds —
representing the time evolution of whole spatial contours
- were constructed and used in inferring scene structure
(29).

This reformulation brought another advantage: Repre-
senting the time-evolution of contours rather than indi-
vidual {eatures would produce connected 3D space curves
rather than isolated points. Grouping of scene measures
into rneaningful and related structures remains one the
largest problems in vision. Since even the most reliable
and precise depth map is only another input to the scene-
understanding process, any technique that can deliver di-
rect segmentation and grouping information with its mea-
sures will have a great impact on the use and reliability
of its data.



6.3.8 Tracking and Identification

Figure 5 shows a composite development in tracking and
identification using the spatiotemporal manifolds for fea-
ture localization in space and time, and the 2D modeling
facility of Chen (7) for object recognition. The figure
shows in successive steps the strongest zero-crossing con-
tours in three adjacent frames (the first and last of which
are shown at the top), with the final view showing the
results of identifying a van and sedan in these data. The
bottom of the figure shows the models used in the recogni-
tion. These were constructed in a earlier training phase.
An added benefit in this figure is that it demonstrates
the value of stereo in perception: The paired figures are
presented for crossed-eye viewing and, when fused into
a single percept, will reveal a considerably more coher-
ent interpretation, one that may be impossible to obtain
monocularly.

6.4 Stereo and Motion

Undoubtedly, simultaneous stereo and motion analysis
must be obtained for us to hope to achieve the capa-
bilities of the human mobile-binocular system. Stereo is
essential, as motion can only compute range to stationary
objects and for known camera motion. At the same time,
motion and sequence analysis are essential, as the active
element in exploring an environment, both for modeling it
and for navigating through it, cannot be met from a single
perspective or even 2 set of predetermined perspectives.
‘While the number of research eflorts addressing stereo
and motion analysis is small (9, 24, 25, 30), a coherent
approach to integrating these two related modalities will
be essential to capturing the true three-dimensionality of
our environment. Figure 6 shows an integration of this
sort of stereo range estimation and sequence processing
operating on a field of rocks. The initial description (mid-
dle) is refined from subsequent views resulting in better
definition on object 3D shape (bottom). The computa-
tional requirements for this data-intensive challenge are
now being met by multi- and parallel-processors, with a
aumber of research groups investigating stereo sequence
analysis in high-performance computing environments.

6.5 Recognition of 3D Shape

The techniques described above have addressed the is-
sue of obtaining estimates of scene 3D structure from two
or more views. The major purpose of this is to provide
the third dimension for tasks involving recognition and
navigation. Unfortunately, very little has been done in
using the 3D estimates produced. An early effort that
took on this problem was my modeling research in Edin-
burgh (31). Models of 3D shape were constructed through
analysis of objects observed rotating about a known axis.
Using a 3D alignment technique, models built from cur-
rent imagery were compared with models stored in the
training phase, and the closest 3D fit was selected as the
match.

Although more refined techniques have been developed in
the interim, for example the work of Szeliski (32) in build-
ing 3D representations using rotation, the majority of re-
search in 3D model matching has used either very simple
representations, such as rectilinear blocks (33), or direct
ranging techriques, such as provided by structured light
or laser devices (34). Where 3D objects have been recog-
nized, they have rarely been modeled by the same process

used for their recognition. An exception to this lack of
acquisition and use of 3D information in computer vision
is in autonomous navigation systems (35, 36), although
most systems use active ranging. Some of these systems
are capable of extracting 3D scene features and then using
these in obstacle-avoiding traversal of the area. Again,
however, the representations tend to be simple (boxes,
points) and not adequate for representing anything of the
sophistication and detail of our environments. A good re-
view of 3D object description techniques may be found in
a paper by Besl (37). Some of the works he cites address
the issue of model building within a recognition context.

Fig. 5. Object Recognition in Spatiotemporal Tracking.
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Fig, 6. Reflned Scene Model from Stereo Sequence.

7. CONCLUDING REMARKS

A system that is to operate in the real world - that is,
to find its way around and interact with other processes
in the environment — must be able both to use informa-
tion about the scene and to derive information during
its operations through use of its sensors. This building
and using of information in scene analysis, both geomet-
tic and otherwise, is an essential element for autonomous
operation. Given sufficiently expressive modeling, single
images will be adequate for interpretation, but to capture
these models requires developing temporal and stereo in-
tegration techniques, and ones that encompass both geo-
metric and relational information about objects and their
surroundings. The alternative — programming in advance
whatever is to be seen — cannot deliver the flexible capa-
bilities needed for operation in the relatively unstructured
and unconstrained domains in which we hope to operate
our vision systems.

When looking at the challenge of precision operation in
a world with the complexity of ours, we can see we have
come a long way, vet still have considerably more to ac-
complish. Techniques for analysis over scale, 2D and 3D
object modeling, optic-low and spatiotemporal analyses,
combining with object recognition using 2D and 3D ge-
ometric and relational descriptors, are leading us in the
direction of attaining these capabilities.
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